If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9x^2+10x+4=0
a = -9; b = 10; c = +4;
Δ = b2-4ac
Δ = 102-4·(-9)·4
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{61}}{2*-9}=\frac{-10-2\sqrt{61}}{-18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{61}}{2*-9}=\frac{-10+2\sqrt{61}}{-18} $
| 3/8=x-4/x+5 | | 12x-3+x=21x-4 | | .4w=8 | | 3(x+3)=2x+13 | | -10x^2+9x-4=0 | | 5x2−40=0 | | -5.2-4x=11.6 | | n+9=-5 | | 20x^2-3x+1=0 | | -2n=8n–10 | | 5-5n=75 | | 5.25=-16t^2+20 | | -20x^2-3x-15=0 | | Y=x+1/6 | | -6.7-2x=2.3 | | r-20=19 | | 4(2x+3)=6-(x-2) | | 9x-2x+6=48 | | 6–2w=4 | | 6x-1/6=3/1 | | -19=5x-2(3x-8)-2 | | 4=y-12/y | | -7y-42=-6y-2 | | -20x^2+15x-3=0 | | (0.25)^x=16 | | 10x+5=9x+20 | | 4(2x+3)=6-(2-x) | | X-1/x+5=7/8 | | 10x+14=22+6x | | 9x-15=-42 | | 2/39x-4)=1/3(2x-6) | | 4x3=5x-4 |